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We are developing statistically based, brittle-fracture models and are imple-
menting them into hydrocodes that can be used for designing systems with
components of ceramics, glass, and/or other brittle materials.  Because of the
advantages it has simulating fracture, we are working primarily with the
smooth particle hydrodynamics code SPHINX.  We describe a new brittle
fracture model that we have implemented into SPHINX, and we discuss how
the model differs from others.  To illustrate the code's current capability, we
simulate an experiment in which a tungsten rod strikes a target of heavily
confined ceramic.  Simulations in 3D at relatively coarse resolution yield
poor results.  However, 2D plane-strain approximations to the test produce
crack patterns that are strikingly similar to the data, although the fracture
model needs further refinement to match some of the finer details.  We con-
clude with an outline of plans for continuing research and development.

INTRODUCTION

Brittle materials are used in many defense applications.  Certain armors have ceramic elements,
for example.  Underground bunkers consist of rock and concrete, and windshields in trucks,
jeeps, and helicopters are made of glass.  Any hydrocode used in the design or in the perfor-
mance assessment of systems like these must accurately model the strength and fracture proper-
ties of brittle materials.  The results of a hydrocode simulation depend on several factors includ-
ing the particular way its fracture model is implemented.  In general, fracture models must be
tailored to the type of code–Lagrangian, Eulerian, or smooth particle hydrodynamics (SPH)–so
that physically realistic cracks result in the context of the code's numerical treatment.  But even
the same model, implemented into two hydrocodes of the same type but with different coding
details, can produce different results.

Statistical fracture models incorporate a number of features including  1) the introduction of a
random distribution of flaws,  2) a differential equation for evolving the local damage variable,
3) formulas for degrading the material strength, for modifying the equation of state (EOS), and
for relaxing the stress components of the damaged material, and  4) methods for producing and
representing cracks in the computational mesh.  All of these components are interdependent and
must function in mutually compatible ways if the experiments are to be modeled accurately.

We have chosen to use SPHINX for the present studies.  SPHINX is based on the smooth par-
ticle hydrodynamics (SPH) formalism, which has certain advantages over other methods for
modeling fracture.  For example, once the damage is calculated and the material properties
degraded, SPH allows for the natural insertion of voids.  SPH offers several additional benefits.
Unlike conventional Lagrangian techniques, SPH avoids mesh tangling and is therefore much
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more robust in its treatment of problems with large material distortions.  In general, SPH is more
computationally efficient than Eulerian codes, and it avoids advection problems, such as nu-
merical diffusion.  SPH does have its own set of problems including instabilities in tension1.
Among other topics, we discuss this instability and possible methods to reduce or eliminate it.

To be useful as a design tool, a hydrocode, along with its material strength and fracture models
must be able to predict a wide range of experiments.  Many fracture models are able to simulate
one-dimensional (1D) flyer plate experiments accurately, but are unable to predict multi-dimen-
sional data.  Some models are accurate for a restricted set of geometries and boundary and initial
conditions, but not for others.  Our goal, which we have not yet reached, is to provide a hydro-
code-based design tool with a single model for the strength and fracture of brittle materials that
will accurately simulate a wide range experiments and real applications.

The SPHINX code is well documented2 and includes several of a number of models that have
been proposed to simulate dynamic brittle fracture3–8.  We have applied SPHINX with its
Cagnoux-Glenn model8,9  to simulate the impacts of steel projectiles on glass10–12.  The results
of the simulations agreed reasonably well with the global data, such as depth of penetration and
the measurements of the free surface velocity on the backside of the target, but we were unable
to match finer details of the crack patterns.  Nor were we able to predict other experiments with
the model parameters that were successful in the glass-impact study.

The primary subject of this investigation is an experiment that was conducted several years ago
at Los Alamos in which a short tungsten rod strikes a target of heavily confined alumina13.  We
modeled the test with a newly implemented statistical fracture model14 which we describe next.

THE FRACTURE  MODEL

Statistical fracture modeling in hydrocodes is a relatively new innovation.  Benz and Asphaug
(BA) pioneered this field several years ago with the introduction of two models3,4.  We began
our investigations of statistical fracture with the model described in their more recent work4, but
in the process of implementing and testing the model in SPHINX, we changed it to such an
extent that it is no longer fair to attribute the result to the original authors.  Having acknowl-
edged our debt to BA, we shall simply refer to our version as the smooth particle hydrodynamics
statistical fracture (SPHSF) model.

The most important differences between the SPHSF model and those published by BA are the
ways we seed the flaws and assign the flaw strengths or threshold stress values at which the
flaws initiate damage in their local particles.  BA select flaw strengths as uniform intervals on
the domain of the Weibull distribution function15,16 and assign the flaws to randomly selected
particles.  BA continue the process of assigning flaws to particles until every particle contains at
least one flaw.  In SPHSF, we begin with an empirical parameter that defines the average num-
ber of flaws per unit volume.  We then calculate the number of flaws in each particle from a
Poisson distribution17 using the particle volume and the average flaw density.  We adopted the
new approach to avoid having the final distribution of flaws depending on the spatial resolution
of the problem.  (Although to spare computer memory, we typically limit number of flaws in
each particle to the ten weakest.)

In principle, once the flaws are seeded we could use any statistical distribution for assigning
their strengths.  However, we follow the precedent set by BA and use the Weibull distribution
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although we use a slightly different functional form.  We define the distribution as
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where V is the volume of the sample, and Vo is the average sample size per flaw so that the total
number of flaws in the material N = V/Vo .  The function n(σ) in Eq. 1 is defined as
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where m, σu and σo are parameters that characterize intrinsic properties of the material and are
independent of the sample volume.  The variable σ is a critical stress at which a given flaw
begins to accumulate damage to the particle in which it resides.  With these definitions, we
interpret Eq. 1 as follows:  In the limit of large N, NP(σ) is the number of flaws in a sample of
volume V that have critical stresses less than or equal to σ.

Besides using a different functional form for the Weibull distribution, we also differ from BA in
the way we use the distribution.  Instead of defining stresses as uniform intervals on the domain,
we use a random number generator to select from the full distribution.  We show elsewhere14

how this approach reproduces the expected distribution of the weakest flaw in a collection of
samples.  The form of Eqs. 1 and 2 is also consistent with the observations that larger samples
(those with larger V) are more likely to break.

The remaining aspects of the SPSF model are fairly standard.  As we mentioned above, each
flaw activates damage when the maximum principal stress in the local particle exceeds the
flaw's assigned threshold.  We define a scalar damage variable D for each particle as the fraction
of its volume that is relieved of stress by the growing cracks.  SPHINX evolves the damage
variable with the ordinary differential equation,

                                                        
dD1/3

dt
 = ni 

Cg
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  ,                                                (3)

which is very similar to the one BA use4.  In Eq. 3, ni is the number of active flaws for particle
i, Cg is the speed at which the crack grows, which we take as a constant equal to 0.4 times the
sound speed, and Rs is a characteristic length.  We use the cube root of the particle volume for
the characteristic length.

Once we compute the damage, we have to couple it back to the material strength and hydrody-
namics calculations.  The current version of SPHINX allows us to scale the yield stress and/or
shear modulus for each particle linearly between a value corresponding to the intact material
and a value corresponding to the fully fractured material.  In this work, we use a constant shear
modulus and let the yield stress decrease linearly to zero as the damage increases from zero to
one.  Other authors take different approaches.  For example, Benz and Asphaug do not modify
their calculation of the stress deviators.  Instead, they include a factor of 1 – D in the equations
where the stress deviators are used. Randles and coworkers6 modify the bulk modulus and the
yield strength in tension only by a factor of 1 – Dt

2, where Dt is the tensile damage parameter.
The latter authors also include shear damage in their model.
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Table 1.  Equation-of-state, strength, and
fracture parameters for the AD85 alumina.

Fig. 1 Schematic cross section of the test con-
figuration.

Finally, the codes must have a way to let the particles separate and form cracks and material
fragments.  Again, different researchers use different methods to achieve particle separation.  If
a particle is fully damaged (D = 1.0), BA exclude that particle from the SPH summations over
the neighboring particles.  This exclusion effectively disconnects the damaged particle from its
neighbors.

Other methods have been used to produce crack structures.  Randles and coworkers6 disconnect
their damaged particles by reducing the smoothing length h.  To prevent adverse effects on the
time step, they limit the reduction of h to 0.8 of its original value.  SPHINX can use either of
these two methods.  In this work, we use the sum exclusion method, but we do so only when the
sum of the pressures of the damaged particle and that of its neighbors is negative.  This scheme
allows damaged particles to resist compression but not tension.

ROD IMPACT INTO A HEAVILY CONFINED CERAMIC

To illustrate the utility of the SPHSF model in SPHINX, we simulated the impact of a short,
tungsten rod with a hemispherical nose into a cylindrically shaped target of heavily confined
alumina AD8513 (see Fig. 1).  The rod was approximately 1.8 cm long and 0.4 cm in radius and
had an initial velocity of 1.288 km/s.  The alumina was about 9 cm long and 5 cm in diameter.

We used linear Us-Up equations of state (EOS) and elastic/perfectly plastic strength models for
all materials in the problem.  Table 1 summarizes the constants used for the ceramic in each of
the calculations described below. The first seven entries are standard input for the EOS and
strength models in SPHINX2 and are reasonably well defined.  The last four entries are param-
eters for the Poisson and Weibull distributions that characterize the fracture.

steel

alumina

24-g tungsten

steel

steel

steel

10 cm

15 cm

CL
velocity = 1.288 km/s

PARAMETER VALUE

ρ (material density) 3.41 g/cm3

c (sound speed) 0.819 x 106 cm/s

s (Us–Up slope) 0.88

γ0 0.0

γ1 1.24

Yo (yield stress) 150.0 kbar

µ (shear modulus) 1.869 Mbar

σo 20.0 kbar

σu 0.0 kbar

m 10

flaw density 500/cm3
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Fig. 2. Sectioned and stained target with
parts of the radial containment removed.

The fracture constants for AD85 alumina are not well defined.  Ideally, for a problem like this,
we would use parameters that had been established from an independent set of calibrations.  For
example, we might have used quasi-static, uniaxial strain measurements to find the constants for
the statistical distribution of the flaw strengths (Eqs. 1 and 2) as Weibull described15.  But we
had no data of this sort available, and so we estimated a set of constants based, in part, on data
presented in Weibull's paper and on what we know (or can guess) about the experiment itself.
Given this self-consistent approach to find appropriate values for the fracture constants, our
calculations are better described as "models" of the experiment rather than as "predictions."
Among our plans for continuing research, we hope to explore ways of independently calibrating
the constants in our models, and we must also examine the sensitivities of our predicted results
to the precisions of these parameters.

Figure 2 shows a cross section of the target after the test was run.  To facilitate handling, most of
the target's radial confinement was cut away, and the interior portion was sectioned and stained
with a dye penetrant to reveal the cracks.  Our first attempt to simulate the test was a fully three-
dimensional (3D) model using 342,989 particles.  Figure 3 shows a a cut-away view of the
ceramic portion of the target at late time (100 µs).  The lighter gray regions mark the fully
damaged material, and the darker grey show the intact material.  Comparing Figs. 2 and 3, we
see that our simulations do not reproduce the experimental crack pattern.

At the time we completed this run, we were uncertain about the reasons for the discrepancy, and
we felt that we had to explore the parameter space more extensively.  However, because of the
size and complexity of the 3D problem, we chose to continue with a series of two-dimensional
(2D), plane-strain approximations to the actual geometry.  The advantage of 2D is economy: we
can model the problem in 2D with higher spatial resolutions and simultaneously reduce the run
times.

Fig. 3.  Result of full 3D SPHINX simula-
tion at 100 µs using 342,989 particles.
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Fig. 4.  Result of 2D SPHINX simulation at
100 µs using 55,435 particles.

Fig. 5.  Result of 2D SPHINX simulation at
100 µs using 27,638 particles.  The scale of
the plot is in cm.

Fig. 6.  Result of 2D SPHINX simulation at
100 µs using 100,769 particles.  The scale
of the plot is in cm.
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Figure 4 shows the result of our 2D plane-
strain model.  We will refer to this calcula-
tion in the following discussion as our
baseline.  In this run, we used 55,435 par-
ticles, which represents the equivalent spa-
tial resolution of a 13-million-particle cal-
culation in 3D.  Once again, we ran the simu-
lation to 100 µs, which is long enough that
no further changes occur in the depth of pen-
etration or the crack pattern.  The runtime
was 1.29 CPU h on 256 processors of our
massively parallel T3D computer.  Compar-
ing the results in Figs. 2 and 4, we see much
better qualitative agreement than we ob-
tained in 3D.  For example, the code seems
to model accurately the diagonal crack struc-
tures that radiate from the impact region.
However, as we expect, the simulation does
not exactly reproduce all details of the ex-
perimental crack structure.  Some of the finer structures do not appear at all.  Moreover, the
simulation underpredicted the measured depth of rod's penetration.

To study the effects of changes in the spatial resolution, we repeated the baseline calculation,
first, with roughly half the number of particles and, second, with roughly double the number.
Figures 5 and 6 show the results of these runs at 100 µs.  Comparing Figs. 4 and 5, we see that
the lower-resolution result omits many of the important  crack features.  The crack pattern from
the higher-resolution model (Fig. 6) is qualitatively similar that obtained from the baseline.
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One implication of the 2D mesh-convergence
study is that we are not calculating the cor-
rect crack pattern in 3D because we did not
resolve the problem well enough.  Among our
plans for continuing research are to produce
3D calculations with more particles and also
to investigate better ways of distributing the
particles.

The baseline calculation in Fig. 4, had the
SPHSF model operating in all of the materi-
als.  It is interesting to compare this result with
a calculation in which fracture is allowed only
in the ceramic. The result, which we present
in Fig. 7, shows all of the major features of
the crack pattern exhibited by the baseline.
Only a few details are different.

To examine the effect of removing the mecha-
nism in the SPHSF for opening cracks, we
repeated our baseline run with the disconnect
option turned off.  We observed no cracks in the ceramic even though a color plot of the damage
(not shown) indicates that more damage occurred in this case than in the corresponding baseline
calculation.  We conclude from this comparison that to see correct crack patterns form, it is
essential that we disconnect fully damaged SPH particles from their neighbors and allow the
local stress fields to relax.

We must include a few comments in closing about the tensile instability problem1 that has yet to
be solved.  SPHINX and other SPH codes exhibit a numerical instability in regions of tension
that tends to bunch particles together.  The instability is a fundamental problem with the SPH
method and is particularly worrysome for those of us who study fracture because it can produce
artificial crack structures that look very convincing.  We try to avoid drawing conclusions from
results that may have been caused by this artifact by running parallel problems with and without
the fracture model.  Specifically, for the present case, we satisfied ourselves that our SPHSF
model is producing the crack structures because we observed no damage without the model.

In our broader experience, the effects of the tensile instability are somewhat problem dependent
and are mitagated somewhat by the reduction of the tensile pressure due to the damage, as BA
have discussed3.  Moreover, as we and others have observed, the instability problem can be
significantly reduced by including more particles in the SPH sums–mathematically, we accom-
plish this by increasing the initial smoothing length for each particle by a factor of 1.5 or more.
We used this method in the present work.

So far our attempts to avoid or reduce the effects of the instability have been no more than ad
hoc fixes.  Some researchers have proposed algorithms to eliminate the problem with a staggard
mesh scheme18, but these approaches have not yet been demonstrated in 2D and 3D.  Wen and
coworkers19 have proposed the method of conservative smoothing that we have implemented
into SPHINX along with a related method that we call local conservative smoothing.  We are
currently testing both algorithms.  Preliminary results indicate that conservative smoothing does
improve the results of some problems but is not a complete solution for all cases.
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Fig. 7.  Repeat of the baseline calculation with
the fracture model operating in the ceramic
region only.  The scale of the plot is in cm.
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FUTURE WORK

We mentioned in the discussion some of the plans we have for continuing research.  The most
important objective is to extend this study to 3D.  As an intermediate step toward this goal, we
hope to conduct some studies in 2D axisymmetric geometry.  We have not begun this work
because the 2D axisymmetric option is not available yet in the T3D-version of SPHINX.  We
will also continue studying the sensitivities of damage to the various parameters in our model.
In terms of improving the SPHSF model itself, we are currently calculating material damage
through tensile forces only, but we recoginze the importance of shear stresses in the fracture
process6,20, and we intend to include the effects of shear in SPHSF at some point.  Also, our
model uses a scalar damage variable.  Randles and Libersky7 have proposed using instead a
tensor damage variable Dij, which should be more physically realistic.  We hope to include this
refinement as well as some of these authors' other suggested improvements, such as internal
boundary conditions on crack surfaces, for example.  Finally, we are continuing our research to
eliminate the tensile instabilities, and we are applying the new model to other test data.
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